If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x-24=0
a = 5; b = -20; c = -24;
Δ = b2-4ac
Δ = -202-4·5·(-24)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{55}}{2*5}=\frac{20-4\sqrt{55}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{55}}{2*5}=\frac{20+4\sqrt{55}}{10} $
| (y^2+9)-6(4+y)=-24 | | 8x^2+x+220=0 | | 4/5d=64 | | (z^2+5)-3(7+z)=2 | | 4/5d=400 | | 1/6x=-18 | | 31v^2+42v=0 | | -7=-5y+4(-y+9)-7(7+3y | | (y^2+4)-6(7+y)=-22 | | 2n^2+21n=0 | | F(x)=-3x^2+9x | | -7m-4=1 | | (X^2+7)-3(9+x)=-2 | | -8+5x+12=12x-10 | | 10k+5=45 | | 3-5(2x+3)=8 | | 2(3r-4)=3r-1 | | 5n=-390 | | 5/7b=40 | | 4+1x=72 | | 4x/x^2=7 | | x-7=6+2 | | 3x-8=16-5× | | 6+2s=s | | 3x-7-5x+10=19 | | 9x-8=-3x+40 | | 5.6#w=0.7 | | 39q^2-44q=0 | | 9y^2-8y+1=3y+1 | | 3w^2+43w+14=0 | | 34=3(u+4)+8u | | 3(4n+7)=-3 |